REPORT No. 304

AN INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE EQUIPPED WITH SEVERAL DIFFERENT SETS OF WINGS

By J. W. CROWLEY, Jr., and M. W. GREEN Langley Memorial Aeronautical Laboratory

	,	•
	ż	4
·		

REPORT No. 304

AN INVESTIGATION OF THE AERODYNAMIC CHARACTERISTICS OF AN AIRPLANE EQUIPPED WITH SEVERAL DIFFERENT SETS OF WINGS

By J. W. CROWLEY, Jr., and M. W. GREEN

SUMMARY

This investigation was conducted by the National Advisory Committee for Aeronautics at Langley Field, Va., at the request of the Army Air Corps, for the purpose of comparing the full scale lift and drag characteristics of an airplane equipped with several sets of wings of commonly used airfoil sections. A Sperry Messenger airplane with wings of R. A. F.-15, U. S. A.-5, U. S. A.-27, and Göttingen 387 airfoil sections was flown and the lift and drag characteristics of the airplane with each set of wings were determined by means of glide tests.

The results are presented in tabular and curve form.

INTRODUCTION

While there is a very considerable amount of data existent on the aerodynamic characteristics of airplanes and airfoils as obtained in wind tunnel model tests, very little information of this kind has been obtained in full-scale flight test. For the purpose of comparing directly the full-scale lift and drag characteristics of a number of commonly used airfoils and also of providing a basis for comparison with model tests, the present tests on a Sperry Messenger airplane equipped with R. A. F.-15, U. S. A.-5, U. S. A.-27, and Göttingen 387 wings were instituted. The investigation was conducted by the National Advisory Committee for Aeronautics, at Langley Field, Va., at the request of the Army Air Corps. The airplane and wings were furnished by the latter. Six sets of wings of different airfoil section were constructed for the investigation, but during the conduction of the tests this type of airplane was condemned as being structurally unsafe and only the above-mentioned wings were used.

The lift and drag characteristics of the complete airplane with each set of wings were obtained by means of glide tests with the propeller operating at the $\frac{V}{nD}$ of zero thrust. It is essential in glide tests that the airplane be motivated by its weight only and, consequently, propeller thrust must be eliminated or allowed for. Two general methods are used: (1) Glide tests with the propeller stopped and locked in a definite position, and (2) glide tests with the propeller operating at the $\frac{V}{nD}$ to produce no thrust. It was necessary to use the latter method in this investigation since the size and loading of the airplane prohibited the use of propeller braking apparatus on the engine.

The $\frac{V}{nD}$ to be used in flight was determined from the results of a wind tunnel test of a 3-foot model of the Sperry Messenger propeller, tested with no body behind it. It was realized that the value thus obtained would be different from the actual $\frac{V}{nD}$ of zero thrust in flight since scale effect and the presence of a body behind the propeller would be expected to change this value, and consequently the propeller operating at this $\frac{V}{nD}$ in flight would be delivering

49296-29-32

some thrust. However, since it was a part of the program of these tests to measure the actual $\frac{V}{nD}$ of zero thrust on the identical airplane and propeller at a later date in the 20-foot propeller research tunnel (then under construction), it was considered satisfactory to conduct the flight tests at the $\frac{V}{nD}$ determined from the model test, as approximating the true $\frac{V}{nD}$ of zero thrust, and then correct the flight results for thrust on the basis of the measurements obtained in the propeller research tunnel tests, when the latter were made available. Actually the flight tests were made at a $\frac{V}{nD}$ of 1.08 while the true $\frac{V}{nD}$ for zero thrust as determined in the propeller research tunnel was 1.07 to 1.08, making the correction on this account negligible.

APPARATUS AND METHOD

AIRPLANE AND WINGS.—A standard Sperry Messenger airplane (fig. 1) equipped with United States Air Service propeller No. 048765 and with four interchangeable sets of wings of different airfoil section was used in this investigation. The airfoil sections were R. A. F.-15, U. S. A.-5, U. S. A.-27, and Göttingen 387. The wings were all of rectangular plan form with equal area and aspect ratio (fig. 2) and were constructed in the conventional manner for wooden

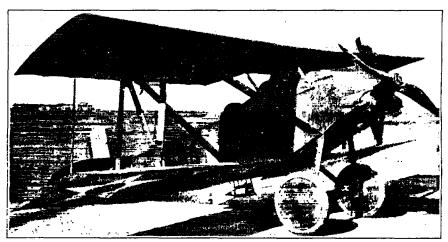


Fig. 1.—Sperry Messenger airplane with flight path angle recorder installed

wings with plywood between the leading edge and the front spar. The dimensions of the biplane cellule were the same for all sets of wings: Span 20 feet, gap 3 feet 10 inches, dihedral $1\frac{1}{2}$ °, and incidence +2°. The stabilizer was fixed at $+1\frac{1}{2}$ ° throughout the tests. Including the area of the center section the total wing area was 148.5 square feet.

Instruments.—The following special test instruments were used:

- (1) N. A. C. A. flight path angle and air-speed recorder (reference 1).—This instrument, as its name implies, was used for measuring the air speed and the angle of inclination that the airplane's flight path made with the horizontal. It is a suspended type instrument and in these tests was lowered approximately 35 feet below the airplane.
- (2) N. A. C. A. recording inclinometer.—This instrument consists essentially of an oil-damped pendulum mounted in the standard photographic recording type of instrument used by the N. A. C. A. It was used to record the attitude of the airplane with respect to the horizontal which, together with the flight path angle, determines the angle of attack.
- (3) N. A. C. A. recording altimeter and air-speed meter.—This instrument is a standard recording air-speed meter (reference 2) with an aneroid mechanism incorporated in it. It was used primarily to measure the barometric pressure during the tests. The air-speed readings provided a check on the air speed recorded by the flight path recorder and the change of altitude with time, together with the air speed, was used to check the flight path angle recorded by the flight path recorder.

- (4) N. A. C. A. control position recorder (reference 3).—This instrument was used to measure the elevator angle during the tests.
- (5) Revolution counter.—The revolutions of the engine were recorded by means of a contact-making apparatus which, connected to the service tachometer shaft, completed an electrical circuit every 50 revolutions of the engine and flashed a light in a standard photographic type recording instrument. These light flashes were recorded on a moving film as a series of dots and knowing the film speed enabled the computation of engine revolutions per minute. Film speed was determined from timing lines placed on the record as mentioned below.
- (6) Thermometer.—An indicating distance thermometer, mounted on the strut, the readings of which were taken by the pilot, gave the air temperatures during the tests.

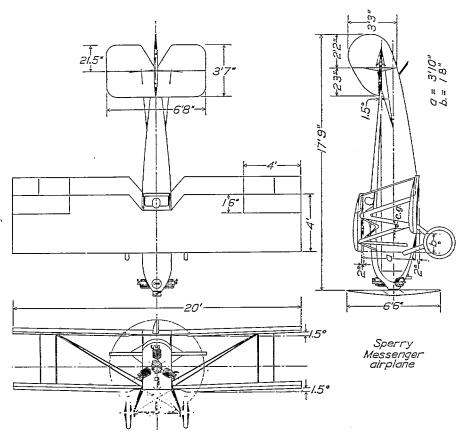
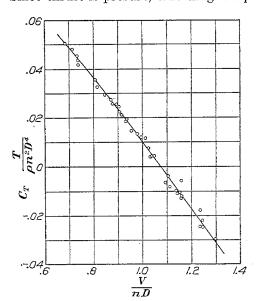


Fig. 2.—Elevations and plan of the Sperry Messenger airplane

The photographic records of all of the above instruments were synchronized by means of timing lines placed simultaneously on all the records at definite time intervals by an N. A. C. A. timer. (Reference 4.)

FLIGHT TESTS.—Preliminary tests were made in level flight to determine the airworthiness of each set of wings and the desirability of continuing further tests.


Following the preliminary tests, the lift and drag characteristics of the airplane when equipped with each set of wings were obtained by means of glide tests (reference 5) with the propeller operating at the $\frac{V}{nD}$ of zero thrust. As previously mentioned, this value of $\frac{V}{nD}$ determined from the results of a 3-foot model test was 1.08. Glides were made at predetermined air speeds and engine revolutions per minute for a change of altitude of approximately 1,000 feet and records were taken for about one-half minute after the airplane had reached a steady condition. The range of speed covered was approximately 45 to 105 miles per hour. On each glide the following data were obtained: airplane weight, angle of flight path to horizontal, angle of wing chord to horizontal, dynamic pressure, barometric pressure, temperature, propeller revolutions

per minute, and elevator angle. All of these were obtained from the instruments previously mentioned except the weight, which was measured before each flight. An allowance was made for the weight-of fuel burned during flight.

REDUCTION OF DATA.—The essential observed and computed data for the determination of lift and drag characteristics are given in Tables I, II, III, and IV.

While it was attempted to conduct the glide tests with the propeller operating at the $\frac{V}{nD}$ of no thrust, this was seldom exactly accomplished since in the first place, as mentioned before, the $\frac{V}{nD}$ of the model test was not the true $\frac{V}{nD}$ for zero thrust in flight, and secondly (and most important) because of the difficulties in adjusting the airplane's air speed and engine speed to obtain the exact $\frac{V}{nD}$ desired. Consequently, there was nearly always a small amount of thrust acting in addition to the weight of the airplane to produce the motion of the airplane, that had to be corrected for as follows:

The apparent-drag is equal and opposite to $W \sin \gamma$, where γ is the angle of the flight path. Since thrust is present, true drag is equal to apparent drag plus the drag component of thrust

F:g. 3.—Propeller thrust characteristics from propeller research tunnel tests

or $D=W\sin\gamma+T\cos\beta$, where β is the angle of the thrust axis with the flight path. Since β is small it is possible, within the limits of accuracy of the measurements, to consider $T\cos\beta=T$ and the true drag is therefore equal to $W\sin\gamma+T$. T is determined for the $\frac{V}{nD}$ attained in flight from the thrust coefficient curve for this same propeller and airplane obtained in tests in the propeller research tunnel. (Fig. 3)

In a like manner lift is equal to $W \cos \gamma + T \sin \beta$. Since $T \sin \beta$ is negligible, lift is equal to $W \cos \gamma$.

The angle of attack given in the tables and curves is the angle of attack of the wing, and the coefficients are given in the absolute form, where

$$C_L = \frac{L}{qS}$$

$$C_D = \frac{D}{qS}$$

Precision.—The greatest sources of error encountered in flight tests of this type are due to accelerations imposed on the airplane and the flight path

recorder by uneven air conditions or the piloting of the airplane during a glide. The instruments used were calibrated frequently during the tests and the errors due to inherent instrumental errors are believed to be negligible in comparison with the others. The tests were made only when the air was found to be unusually smooth and any readings that indicated the presence of accelerations were discarded, but even under these conditions and with the most careful piloting it is probable that accelerations were present to some extent. In general, considering the number and grouping of the experimental points, it is believed that the faired curves of lift and drag coefficients are precise to within ± 2 per cent. In the determination of angle of attack, accelerations might cause greater errors since this measurement is obtained from the readings of two pendulum type instruments and the angle of attack may, therefore, be in error as much as ± 3 or ± 4 per cent.

Another possible source of error lies in the fact that, while the propeller characteristics were determined in the wind tunnel with the propeller axis parallel to the relative wind, in flight the propeller was always operating with its axis at some angle of pitch, and consequently the $\frac{V}{nD}$ for zero thrust from the wind tunnel tests might not be exactly that obtained in flight. However,

subsequent tests in the propeller research tunnel on a propeller operating with its axis at a pitch of 5°, indicated that the pitch produced no measurable change in the propeller characteristics, and it has been assumed in these tests that errors due to this cause are negligible.

RESULTS

The results of the investigation are given in Tables I to IV, and Figures 4 to 15. Figures 4, 5, 6, and 7 give the polar diagrams of the airplane when equipped with R. A. F.-15, U. S. A.-5, U. S. A.-27, and Göttingen 387 wings, respectively, with the experimental points shown thereon. The polars for all four sets of wings are plotted together for comparison in Figure 8. In addition, the C_L , C_D , and L/D versus angle of attack for these wings have been plotted in Figures 9 to 15, where Figures 9, 10, 11, and 12 give these results for each set of wings with the experimental points shown, and Figures 13, 14, and 15 compare the C_L , C_D , and L/D, respectively.

It will be noted that considerably fewer measurements were obtained with the Göttingen 387 wings than with any of the others and consequently the curves for these are not as definitely established. This was occasioned by the fact that the airplane was condemned while the tests with these wings were in progress.

The results, as shown on the curves, cover the usual flying range of an airplane without reaching maximum lift or minimum drag, although the latter is more closely approached. It is usually difficult to obtain maximum lift in glide tests, and it was almost impossible in these particular tests since the engine could not be throttled sufficiently to give the proper $\frac{V}{nD}$ at the low air speed required without danger of stopping the propeller. This would have been extremely hazardous because the pilot had to reel in the suspended flight path recorder in addition to piloting the airplane. Even without this difficulty it is believed that only slightly higher lifts could have been reached as the lateral control of the airplane was poor and the difficulties in holding the airplane in a steady glide at low speed were great.

The comparison of the lift and drag characteristics is best shown in Figure 8. This figure indicates that, as would be expected, the use of the thin section, R. A. F.-15, gives the lowest maximum lift and minimum drag, while the thicker section, Göttingen 387, gives the greatest maximum lift and highest minimum drag. The U. S. A.-5 and U. S. A.-27 give quite similar effects in all respects.

The comparisons given in Figures 13 and 14 are mainly of interest in that they show that the slopes of the lift curves (and to a somewhat less extent the slopes of the drag curves) are not greatly different, indicating quite similar characteristics with all sets of wings except, of course, in the region of maximum lift.

The comparison of the L/D of the airplane with the different wings (fig. 15) shows that the use of the U. S. A.-5 wings gave the highest L/D and the U. S. A.-27 only a slightly lower value.

In general, the results, particularly as shown in Figure 8, emphasize one fact which it is believed is not sufficiently appreciated and that is, that with the exception of the change in maximum lift, the use of different reasonably good airfoil sections in themselves can not be expected to greatly change the performance of an airplane. When it is considered that the drag of an airplane consists of the airplane's parasite drag, the profile and induced drag of the tail surfaces, the induced drag of the wings, and the profile drag of the wings, it will be more appreciated that different airfoil sections, which change only the wing profile drag, can not be expected to produce any great changes in the airplane's performance.

Langley Memorial Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., July 9, 1928.

BIBLIOGRAPHY

- Reference I. Coleman, D. G.: N. A. C. A. Flight Path Angle and Air-Speed Recorder. N. A. C. A. Technical Note No. 233 (1926).
- Reference 2. Norton, F. H.: N. A. C. A. Recording Air-Speed Meter. N. A. C. A. Technical Note No. 64 (1921).
- Reference 3. Ronan, K. M.: An Instrument for Recording the Position of Airplane Control Surfaces. N. A. C. A. Technical Note No. 154 (1923).
- Reference 4. Brown, W. G.: The Synchronization of N. A. C. A. Flight Records. N. A. C. A. Technical Note No. 117 (1922).
- Reference 5. Green, M. W.: Determination of the Lift and Drag Characteristics of an Airplane in Flight. N. A. C. A. Technical Note No 223 (1925).

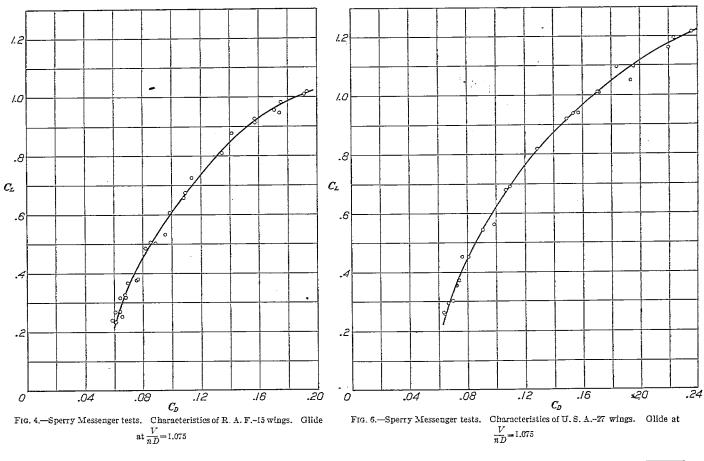


Fig. 4.—Sperry Messenger tests. Characteristics of R. A. F.–15 wings. Glide at $\frac{V}{nD}$ =1.075

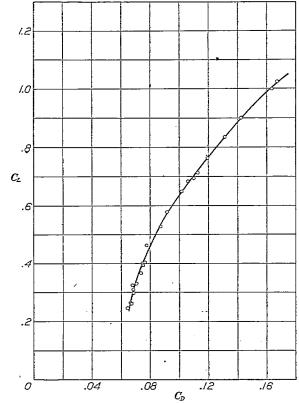
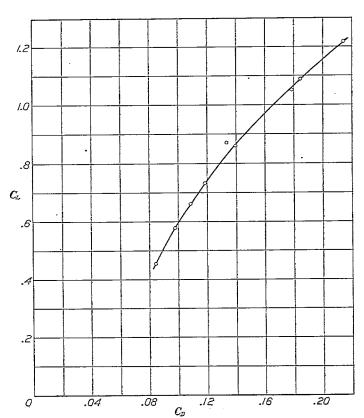



Fig. 5.—Sperry Messenger tests. Characteristics of U.S. A.-5 wings. Glide at $\frac{V}{nD}$ = 1.075

 C_D .04 .08 .12 .16 .20 Fig. 7.—Sperry Messenger tests. Characteristics of Göttingen 387 wings. Glide at $\frac{V}{nD}$ =1.075. (Limited data)

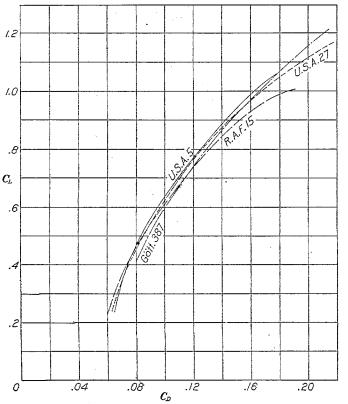
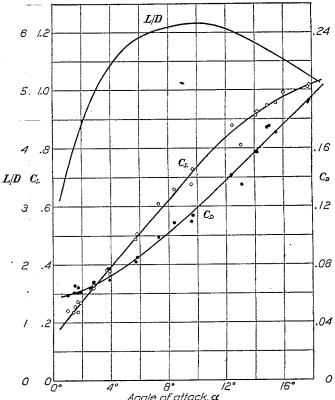



Fig. 8.—Sperry Messenger tests. Characteristics of the various wings. Glide at $\frac{V}{nD}{=}1.075$

Angle of attack, α Fig. 9.—Sperry Messenger tests. Characteristics of R. A. F.-15 wings. Glide at $\frac{V}{nD}$ =1.075

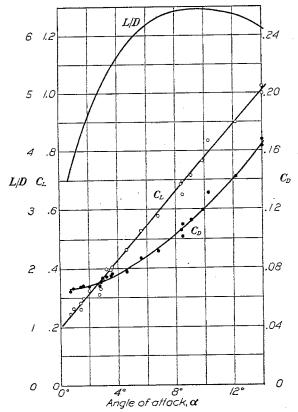


Fig. 10.—Sperry Messenger tests. Characteristics of U. S. A.–5 wings. Glide at $\frac{V}{nD}$ =1.075

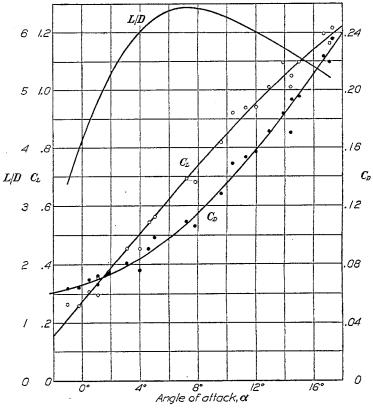


Fig. 11.—Sperry Messenger tests. Characteristics of U. S. A.–27 wings. Glide at $\frac{V}{nD}{=}1.075$

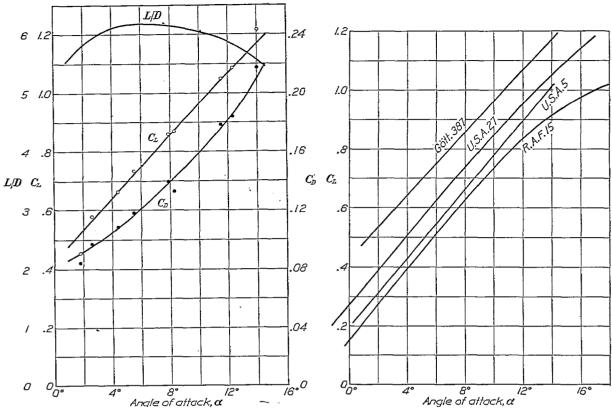


Fig. 12.—Sperry Messenger tests. Characteristics of Göttingen 387 wings. Glide at $\frac{V}{nD}$ =1.075. (Limited data)

Fig. 13.—Sperry Messenger tests. Lift vs. angle of attack. Glide at $\frac{V}{nD} = 1.075$

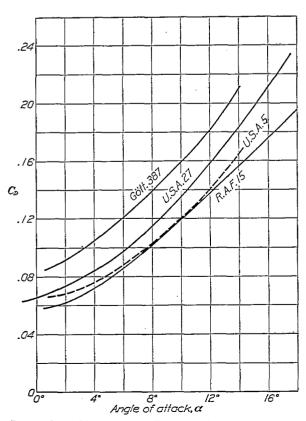


Fig. 14.—Sperry Messenger tests. Drag vs. angle of attack. Glide at $\frac{V}{nD}{=}1.075$

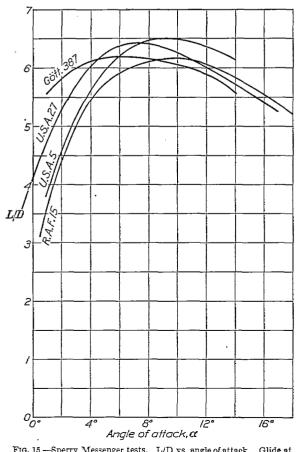


Fig. 15.—Sperry Messenger tests. L/D vs. angle of attack. Glide at $\frac{V}{nD}{=}1.075$

TABLE I.—DATA FOR U. S. A.-5 WING GLIDE TESTS ON SPERRY MESSENGER AIRPLANE

		q	P	T	gp	V_T	Vind	R. P. M.	$V_{T/nD}$	C_T	T	γ	Sin γ	Cos γ	. W	D-T	D	L	C_D	CL,		α	φ
Flight No.	Run No.	Dy- namic pres- sure	Baro- metric pres- sure	Tem- pera- ture	Specific weight	True velocity	Indi- cated velocity		,	Propeller thrust coefficient $T/\rho V^2D^2$	Thrust	Flight- path angle			Weight	Appar- ent drag	True drag	Lift	$rac{D}{qar{S}}$	$rac{L}{qS}$	Inclina- tion	Angle of attack	Eleva- tor angle
A B C D E	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20 21 22 23	Lbs. per sq. ft. 16, 65 22, 35 26, 50 16, 90 6, 76 8, 84 8, 96 62, 10, 25 21, 30 25, 25 11, 70 14, 58 18, 20 9, 682 19, 69 9, 88 12, 72 16, 75 20, 40	Ins. hg. 27. 6 28. 0 27. 8 27. 8 27. 3 26. 75 27. 90 27. 50 27. 20 27. 20 27. 20 27. 20 27. 20 27. 20 27. 20 27. 20 27. 20 27. 30 27. 4 27. 4 28. 2 27. 30 27. 30 27. 30 27. 30 27. 55 27. 80 27. 80	° C. 1	Lbs. per cu. ft. 0. 0740 0.752 0.748 0.734 0.735 0.748 0.748 0.735 0.729 0.729 0.750 0.750 0.750 0.750 0.753 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738 0.738	Ft. per sec. 120. 5 138. 2 151.0 0 80. 8 86. 8 89. 6 91.0 94. 5 133. 8 149. 2 111. 5 123. 5 77. 0 93. 5 106. 0 0 121. 0 134. 0	M. p. h. 80. 6 93. 5 102. 0 81. 2 51. 4 54. 2 58. 8 56. 2 60. 5 61. 3 89. 2 99. 4 67. 6 675. 5 84. 4 50. 8 62. 2 70. 6 80. 9 89. 2	1, 020 1, 145 1, 242 1, 050 632 660 740 716 760 780 1, 140 1, 260 805 900 1, 000 900 900 900 1, 128	1. 088 1. 112 1. 118 1. 070 1. 120 1. 120 1. 080 1. 107 1. 105 1. 100 1. 100 1. 100 1. 107 1. 140 1. 135 1. 130 1. 107 1. 140 1. 135 1. 102 1. 076 1. 108	-0. 0015 0048 0048 0050 0050 0050 0034 0039 0039 0039 0039 0039 0031 0005 0007 0031 0005 0007 0055 0007 0055 0007	Lbs2.1 -7.9 -10.7 +8 -2.8 -3.2 -0.4 +0.2 -2.7 -2.3 -3.4 -1.0 -3.6 -5.1 +6 -7.3 -8.5 +10.0 -3.6 -3.6 -3.3 -8.5 +10.0 -3.6 -3.3 -8.5 +10.0 -3.6 -3.3 -8.5 +10.0 -3.6 -3.3 -8.5 +10.0 -3.6 -3.3 -3.5 +10.0 -3.6 -3.3 -3.5 +10.0 -3.6 -3.5 +10.0 +10.0 +10.	Deg. 10.8 13.4 15.2 210.7 9.4 9.2 8.9 9.1 9.1 12.3 14.4 10.0 011.9 9.4 8.8 9.4 11.0 0 11.9 9.4 8.8 3 9.4 11.0 0 12.0	0. 1874 2317 2622 1857 1633 1599 1547 1547 1582 1582 2130 2487 2147 2487 1633 1736 2062 1633 1736 2079	0, 9823 9728 9826 9826 9871 9880 9874 9874 9874 9876 9866 9848 9767 9886 9886 9886 9886 9886 9886 9886	Lbs. 1, 019 1, 016 1, 013 1, 010 1, 019 1, 016 1, 013 1, 010 1, 007 1, 004 1, 007 1, 019 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 013 1, 016 1, 017 1, 019 1, 016 1, 013 1, 016 1, 017 1, 019 1, 016 1, 017 1, 018 1, 0	Lbs. 191. 0 235. 0 187. 5 160. 5 162. 2 177. 0 156. 5 216. 5 251. 0 166. 5 166. 2 176. 0 208. 5 166. 2 165. 2 165. 5 166. 3 165. 2 165. 5 166.	Lbs. 188. 9 227. 1 255. 3 188. 3 163. 7 159. 0 156. 6 156. 8 156. 7 154. 8 216. 0 248. 9 215. 6 159. 2 167. 5 199. 5 164. 6 155. 2 164. 6 155. 2 164. 6 155. 2	Lbs. 1,000 988 978 992 1,005 1,000 993 991 989 995 986 975 1,000 991 1,005 1,002 1,000 998	0. 0766 0685 0644 0751 1635 1421 1195 1311 1129 1100 1018 0706 0681 0673 0918 0776 073 0918 076 076 0778	0. 404 298 246 395 1. 000 - 900 - 764 835 - 714 - 696 650 330 261 - 578 463 381 - 1025 6850 5280 3980 3980 3250	Deg. 7. 2 11.8 14.5 7.2 4.6 3.0 1.0 1.0 1.0 1.3 5 9.7 13.5 9.7 13.0 2.6 5.4 9.0 4.6 5.4 9.0 4.6 7.8 10.0	Deg. 3.6 6 0.7 3.5 14.0 12.2 9.9 9 10.3 9.1 1.8.5 2.8 1.9 7 1.4 6.8 4.6 2.9 9.4 0.0 14.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15	Deg. 1.5 1.0 5 0.357 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

TABLE II.—DATA FOR R. A. F.-15 WING

GLIDE TESTS ON SPERRY MESSENGER AIRPLANE

		Į ą	P	7'	gρ	V_T	\mathcal{V}_{ind}	R, P. M.	$V_{T/nD}$	C_{T}	T	γ	Sin γ	Cos γ	W	D-T	D	L	C_D	C_L		α	ф
Flight No:	Run No,	Dy- namie pres- sure	Baro- metric pres- sure	Tem- pera- ture	Specific weight	True velocity	Indi- cated velocity			Propeller thrust co- efficient T/\rho V^2D^2	Thrust	Flight- path angle			Weight	Appar- ent drag	True drag	Lift	<u>D</u> qS	L, qS	Inclina- tion	Angle of attack	Eleva- tor angle
A B C	1 1 2 2 3 4 4 5 6 6 7 7 8 8 0 10 11 11 13 13 14 15 16 17 18 19 20 21 22 22 32 24 25 26 27 28 20	Lbs, per sq. ft. 6. 86 28, 10 28, 10 22, 90 20, 18 20, 80 7, 54 9, 10 17, 70 17, 80 13, 80 13, 80 21, 05 14, 25 10, 15 18, 20 18, 20 18, 20 18, 20 18, 25 12, 48 9, 88 8, 17 7, 93 7, 02 6, 55 7, 53 7, 02 6, 55	Ins. hg. 27, 20 27, 26 28, 32 28, 10 27, 78 27, 87 27, 78 27, 87 27, 79 27, 10 27, 27, 27, 28, 26, 28, 26 28, 26 28, 26 28, 40 27, 40 27, 88 20, 77, 77 27, 88, 20, 27, 77 28, 20, 27, 77 28, 20, 27, 77 27, 88, 20, 27, 77 27, 88, 20, 27, 77 27, 88, 20, 27, 77 27, 88, 28, 40 27, 88, 20, 27, 88, 28, 40 27, 88, 20, 27, 88, 28, 40 27, 88, 28, 43	° C. 17 14 16	0719 0714 0704 0707 0709 0709 0709 0709 0701 0701 0709 0701 0701	Fl. per sec. 79, 9 159, 8 158, 8 140, 2 135, 5 137, 5 6 33, 0 90, 8 128, 0 112, 8 3 109, 8 95, 7 99, 6 158, 8 151, 0 187, 2 127, 6 109, 1 105, 2 93, 9 85, 1 82, 0 79, 1 77, 0 81, 77, 79, 8 76, 1	M, p. h. 51.8 104.8 104.8 104.8 98.3 98.6 88.8 99.2 54.3 59.6 83.2 83.3 72.0 63.0 4 103.0 101.0 90.6 84.4 72.0 62.2 56.5 55.6 55.5 50.6	040 1, 275 1, 280 1, 180 1, 180 1, 080 1, 085 670 703 1, 118 1, 188 900 790 795 832 1, 280 1, 276 1, 175 1, 175 1, 030 905 772 660 664 640 640 618	1. 150 1. 150 1. 140 1. 165 1. 148 1. 152 1. 165 1. 140 1. 190 1. 105 1. 102 1. 102 1. 102 1. 102 1. 102 1. 100 1. 109 1.	-0,0070 -0074 -0097 -0074 -0097 -0077 -0081 -0097 -0074 -0113 -0097 -0050 -0036 -0036 -0036 -0036 -0036 -0036 -0036 -0036 -0036 -0038 -0036 -0038 -0074 -0064	Lbs44.68 -117.66 -118.88 -117.66 -118.88 -116.22 -4.77 -4.78 -1.18 -5.60 -1.08 -1	Deg. 10. 4 15. 5 15. 6 13. 9 12. 4 12. 4 11. 2 11. 1 10. 0 9 9 9 2 2 11. 1 1. 3 10. 2 10. 0 10. 6 11. 0 10. 6 11. 0 10. 8	0. 1805 2672 2689 2402 2402 2147 1033 1042 1925 1736 1719 1599 1616 2521 2096 1959 1971 1738 1719 1633 1719 1633 1711 1738 173	0. 9886 9632 9707 9707 9767 9866 9866 9810 9813 9871 9871 9871 9871 9877 9878 9809 9877 9878 9809 9877 9878 9809 9819 9819 9819 9819 9819 9819	Lbs. 1, 016 1, 013 1, 010 1, 007 1, 004 1, 010 1, 007 1, 004 1, 001 1, 007 1, 004 1, 013 1, 010 1, 017 1, 004 1, 013 1, 010 1, 017 1, 004 1, 013 1, 010 1, 007 1, 004 1, 013 1, 010 1, 010 1, 007 1, 004 1, 001 1, 001	Lbs. 183. 0 271. 0 271. 0 271. 0 242. 0 241. 6 121. 0 241. 6 121. 0 241. 6 162. 8 162. 8 162. 8 162. 8 162. 6 175. 5 173. 0 166. 3 162. 0 242. 0 163. 8 171. 2 180. 6 163. 8 171. 2 180. 6 163. 8 171. 2 180. 6 163. 8 171. 2 180. 6 183. 8 171. 2 180. 6 183. 8 171. 2 180. 6 183. 8 171. 2 180. 6 183. 8 171. 2 180. 6 183. 8 171. 2 180. 6 183. 8 171. 5 186. 0 189. 8	Lbs, 4 252, 2 253, 4 222, 8 226, 0 201, 2 107, 8 158, 1 107, 8 160, 2 236, 2 236, 2 236, 2 2174, 9 177, 0 1 163, 4 171, 0 187, 6 171, 0 181, 6 186, 0	## ## ## ## ## ## ## ## ## ## ## ## ##	0. 1751 .0605 .0608 .0608 .0608 .0604 .0678 .0768 .0768 .0768 .0850 .0850 .0850 .0850 .0853 .0879 .0692 .0888 .0853 .0679 .0692 .0888 .0986 .1098 .109	0, 982 233 267 270 327 315 877 726 380 376 485 505 608 240 254 317 366 502 533 675 810 925 955 1, 918	Deg. +4.6 6 -13.8 8 -14.2 -12.0 0 -12.2 2 -9.6 -9.8 8 +8.0 +7.4 -7.2 -4.1 -9.3 -4.1 -9.3 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4 -7.4	Deg. 15.0 1.7 1.4 1.9 1.7 2.8 2.6 12.4 9.7 3.8 3.9 5.7 5.8 4 7.3 1.0 1.5 2.8 3.9 9.6 13.1 14.2 15.5 17.8 14.1 14.9 17.7	Deg, +4.0 -2.5 -2.2 -2.0 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5 -1.5

TABLE III.—DATA FOR U. S. A.-27 WING GLIDE TESTS ON SPERRY MESSENGER AIRPLANE

		q	P	T	др	V_T	Vind	R. P. M.	$V_{T/nD}$	C_T	T	γ	Sin γ	Cos γ	W	D-T	D	L	C_D	C _L		α	φ
Flight No.	Run No.	Dy- namic pres- sure	Baro- metric pres- sure	Tem- pera- ture	Specific weight	walasitwa	Indi- cated velocity	1		Propeller thrust coefficient $T/\rho V^2D^2$	Thrust	Flight- path angle			Weight	Appar- ent drag	True drag	Lift	$rac{D}{qS}$	$rac{\mathcal{L}}{gS}$	Inclina- tion	Angle of attack	Eleva- tor angle
АВ	1 2 3 4 5 6 7 8 9	Lhs. per sq. ft. 5. 72 6. 50 7. 28 18. 20 21. 85 25. 50 5. 62 6. 24 6. 76 8. 06 9. 98	Ins. hg. 27. 45 27. 75 27. 50 27. 22 27. 53 27. 96 27. 82 27. 65 27. 52 27. 52	° C. 15	cu, ft. 0.0702 .0710 .0704 .0722 .0705 .0716 .0711 .0707 .0703 .0705	72, 4 76, 8 81, 6 127, 5 141, 0 151, 2 71, 1 75, 2 78, 5 85, 8	M. p. h. 47, 2 50, 3 53, 3 84, 2 92, 4 99, 8 46, 8 49, 4 51, 4 56, 1	600 638 698 1, 095 1, 210 1, 275 620 660 680 760	1. 112 1. 110 1. 078 1. 070 1. 074 1. 092 1. 058 1. 048 1. 048 1. 040	0.0041 0039 0003 +0006 0025 0021 .0033 .0017	Lbs. -2.0 -2.1 2 +.9 .0 -5.4 +1.0 1.7 1.0 3.1	Deg. 10.7 10.0 9.3 11.2 12.8 14.0 10.9 9.4 9.6 9.0	0. 1857 . 1736 . 1616 . 1042 . 2215 . 2419 . 1891 . 1633 . 1668 . 1564	0. 9826 9848 9869 9816 9751 9703 9820 9860 9877	Lbs. 1, 038 1, 030 1, 027 1, 024 1, 021 1, 018 1, 030 1, 037 1, 027 1, 024	Lbs. 192, 0 179, 0 166, 0 199, 0 226, 0 196, 0 168, 5 171, 3 160, 5	Lbs. 190.0 186.9 165.8 199.9 226.0 240.6 197.0 170.2 172.3 163.6	Lbs. 1, 016 1, 013 1, 012 1, 008 998 999 1, 015 1, 016 1, 013	0. 2235 . 1936 . 1535 . 0741 . 0698 . 0636 . 2360 . 1838 . 1714 . 1490	1. 195 1. 050 . 938 . 373 . 308 . 264 1. 216 1. 096 1. 010 . 920	Deg. +6.0 4.5 2.0 -9.4 -12.3 -15.0 +6.4 4.5 3.3	Deg. +16.7 14.5 11.3 +1.8 +.5 -1.0 +17.3 13.9 10.4	Deg. +6.0 4.8 3.0 .5 .0 7 +7.5 4.7 3.9 2.7
D	12 13 14 15 16 17 18 19 20 21 22 23 24	11, 95 14, 88 5, 88 6, 76 8, 32 15, 00 22, 65 6, 24 7, 28 9, 88 12, 90 25, 75	27. 77 27. 37 27. 3 27. 4 27. 5 27. 6 27. 6 27. 7 26. 6 27. 7 28. 2 28. 2 27. 9	9	0710 0700 0712 0715 0718 0715 0718 0722 0722 0725 0722	95, 5 104, 0 117, 0 73, 0 78, 1 86, 3 116, 2 142, 8 74, 5 80, 4 93, 8 104, 5 129, 0 151, 0	62. 4 68. 4 76. 2 47. 9 51. 4 57. 0 76. 5 94. 0 49. 4 53. 3 62. 0 69. 86. 0 100. 0	800 900 1,000 720 780 1,000 1,200 660 700 800 900 1,100	1. 095 1. 063 1. 076 1. 020 . 998 1. 018 1. 070 1. 092 1. 040 1. 058 1. 078 1. 076 1. 076 1. 068	0023 +- 0016 0000 +- 0073 0107 0006 0020 +- 0045 0000 0000 0000 0000 0000 0000	-1.9 +1.5 +3.6 6.1 5.3 7 -3.8 +2.4 1.2 4 +.6	9. 0 9. 2 10. 3 10. 5 9. 2 8. 6 9. 5 10. 0 9. 4 9. 0 9. 4 11. 5 13. 8	. 1564 . 1599 . 1788 . 1822 . 1599 . 1495 . 1650 . 2233 . 1736 . 1633 . 1564 . 1633 . 1993 . 2385	. 9877 . 9871 . 9839 . 9833 . 9871 . 9888 . 9863 . 9748 . 9865 . 9876 . 9799 . 9711	1, 021 1, 018 1, 015 1, 033 1, 030 1, 027 1, 024 1, 033 1, 030 1, 027 1, 024 1, 021 1, 021	160. 0 162. 8 178. 6 188. 5 164. 9 153. 5 169. 0 228. 0 179. 0 168. 3 151. 0 167. 3 204. 0	158. 1 164. 3 178. 6 192. 1 171. 0 158. 8 169. 7 224. 2 181. 4 169. 5 160. 6 107. 9 204. 6	1, 010 1, 006 1, 006 1, 015 1, 016 1, 012 1, 0106 99 1, 016 1, 015 1, 013 1, 010 1, 000	. 1067 . 0986 . 0809 . 2198 . 1702 . 1286 . 0761 . 0666 . 1959 . 1570 . 1094 . 6907 . 0725	. 680 . 563 . 453 1. 162 1. 010 . 819 . 453 . 295 1. 097 . 940 . 692 . 545 . 356 . 259	-1.2 -4.2 -7.2 +6.6 5.2 1.0 -5.5 -11.8 +5.0 2.6 -1.8 -10.4 -14.0	7.8 5.0 3.1 17.1 14.4 9.6 4.0 1.1 15.0 12.0 7.2 4.6 1.1	1. 7 1. 5 2 5. 7 3. 5 2. 7 8 0 5. 00 3. 30 2. 40 1. 50 - 60

TABLE IV.—DATA FOR GÖTTINGEN 387 WING

GLIDE TESTS ON SPERRY MESSENGER AIRPLANE

		q	P	T .	gρ	V_T	Vind	R. P. M.	$V_{T/nD}$	C_T	T	γ	Sin 7	Cos γ	W	D-T	D	L	C _D	C _L		α	φ
Flight No.	Run No.	Dy- namic pres- sure	Baro- metric pres- sure	Tem- pera- ture	Specific weight	True velocity	Indi- cated velocity	,		Propeller thrust coefficient $T/\rho V^2 D^2$	Thrust	Flight- path angle			Weight	Appar- ent drag	True drag	Lift	$\frac{D}{qS}$	$\frac{L}{qS}$	Inclina- tion	Angle of attack	Eleva- tor angle
В	1 2 3 4 5 6 7 8	Lbs. per sq. ft. 6. 86 8. 32 9. 72 10. 68 12. 20 15. 32 5. 98 6. 66 8. 32	Ins. hg. 28. 15 28. 30 28. 50 28. 40 28. 40 28. 50 28. 40 28. 50 28. 70	° C. 25	Lbs. per cu. ft. 0.0695 .0698 .0704 .0702 .0702 .0704 .0696 .0700	Ft. per sec. 79. 8 87. 5 94. 2 98. 8 106. 0 118. 6 74. 4 78. 4 87. 5	M. p. h. 51.8 57.0 61.6 64.5 69.0 77.5 48.4 51.0 57.0	670 687 765 810 884 986 625 595	1. 095 1. 170 1. 130 1. 120 1. 105 1. 105 1. 095 1. 210 1. 150	-0.0023 0097 0059 0050 0034 0023 0128 0079	Lbs1. 33 -6. 82 -4. 50 -3. 51 -4. 41 -7. 20 -5. 50	Deg. 9.7 9.6 9.4 9.5 9.8 10.7 10.2 10.0	0. 1685 . 1668 . 1633 . 1650 . 1702 . 1857 . 1771 . 1736 . 1564	0. 9857 . 9860 . 9863 . 9854 . 9826 . 9842 . 9848 . 9877	Lbs. 1, 082 1, 077 1, 072 1, 067 1, 062 1, 057 1, 098 1, 093 1, 088	Lbs. 182. 8 179. 5 175. 2 176. 0 181. 0 196. 0 194. 5 189. 8	Lbs. 181. 5 172. 7 170. 4 171. 5 177. 5 191. 6 193. 3 182. 6 164. 3	Lbs. 1, 068 1, 060 1, 058 1, 050 1, 048 1, 038 1, 038 1, 078 1, 072	0. 1784 . 1398 . 1182 . 1084 . 0980 . 0841 . 2175 . 1845 . 1330	1. 050	Deg. 1.8 1.7 3.9 5.1 7.2 -8.9 3.8 2.337	Deg. 11. 5 7. 9 5. 5 4. 4 2. 6 1. 8 14. 0 12. 3 8. 3	Deg. 4.0 1.0 .35 -1.0 -1.5 5.3 3.5 1.9